Publications by Year: 2018

2018
Rykken JJ, Farrell BD. Exploring the Microwilderness of Boston Harbor Islands National Recreation Area: Terrestrial Invertebrate All Taxa Biodiversity Inventory. Northeastern Naturalist. 2018;25 :23-44.
Rykken JJ, Farrell BD. Six-Legged Colonists: The Establishment and Distribution of Non-Native Beetles in Boston Harbor Islands NRA. Northeastern Naturalist. 2018;25 :1-22.Abstract
Boston Harbor Islands National Recreation Area lies in a busy, urban harbor that has been receiving immigrants, both vertebrate and invertebrate, since the 17th century. As part of an All Taxa Biodiversity Inventory conducted in the park from 2005 to 2011, we documented the abundance and distribution of native and non-native beetles across 15 islands and peninsulas in Boston Harbor. We hypothesized that proportions of non-native species on the islands would be high relative to the nearby mainland (Rhode Island) and other more isolated coastal islands in Massachusetts. We also compared distribution patterns between native and non-native species and tested the predictive value of island size and isolation for determining species richness on individual islands. Focusing on 6 beetle families, we documented 105 non-native beetles out of a total of 442 species. The proportion of non-native species was 2–3 times higher in Boston Harbor Islands than in Rhode Island for all 6 beetle families, as well as for beetles on several Massachusetts islands. We discuss likely routes of immigration for beetles over the past several centuries and why islands in Boston Harbor may be attractive to non-native species. Within the park, non-native species in most focal families were, on average, more abundant and widespread across islands than native beetles, but the number or proportion of non-native species was not strongly related to island size or isolation. The high proportions of non-native species in the park, including some known pests and several new state, US, and North American records, emphasize the need for continued inventory and surveillance.
McKenna DD, Clarke D, Anderson R, Astrin J, Brown S, Chamorro L, Davis S, de Medeiros BAS, del Rio M, Haran J, et al. Morphological and Molecular Perspectives on the Phylogeny, Evolution, and Classification of Weevils (Coleoptera: Curculionoidea): Proceedings from the 2016 International Weevil Meeting. Diversity. 2018;10 :64.
de Medeiros BAS, Farrell BD. Whole-genome amplification in double-digest RADseq results in adequate libraries but fewer sequenced loci. PeerJP. 2018;(6) :e5089. DOI (full text)Abstract
Whole-genome amplification by multiple displacement amplification (MDA) is a promising technique to enable the use of samples with only limited amount of DNA for the construction of RAD-seq libraries. Previous work has shown that, when the amount of DNA used in the MDA reaction is large, double-digest RAD-seq (ddRAD) libraries prepared with amplified genomic DNA result in data that are indistinguishable from libraries prepared directly from genomic DNA. Based on this observation, here we evaluate the quality of ddRAD libraries prepared from MDA-amplified genomic DNA when the amount of input genomic DNA and the coverage obtained for samples is variable. By simultaneously preparing libraries for five species of weevils (Coleoptera, Curculionidae), we also evaluate the likelihood that potential contaminants will be encountered in the assembled dataset. Overall, our results indicate that MDA may not be able to rescue all samples with small amounts of DNA, but it does produce ddRAD libraries adequate for studies of phylogeography and population genetics even when conditions are not optimal. We find that MDA makes it harder to predict the number of loci that will be obtained for a given sequencing effort, with some samples behaving like traditional libraries and others yielding fewer loci than expected. This seems to be caused both by stochastic and deterministic effects during amplification. Further, the reduction in loci is stronger in libraries with lower amounts of template DNA for the MDA reaction. Even though a few samples exhibit substantial levels of contamination in raw reads, the effect is very small in the final dataset, suggesting that filters imposed during dataset assembly are important in removing contamination. Importantly, samples with strong signs of contamination and biases in heterozygosity were also those with fewer loci shared in the final dataset, suggesting that stringent filtering of samples with significant amounts of missing data is important when assembling data derived from MDA-amplified genomic DNA. Overall, we find that the combination of MDA and ddRAD results in high-quality datasets for population genetics as long as the sequence data is properly filtered during assembly.
Kim SI, de Medeiros BAS, Byun B-K, Lee S, Kang J-H, Lee B, Farrell BD. West meets East: How do rainforest beetles become circum-Pacific? Evolutionary origin of Callipogon relictus and allied species (Cerambycidae: Prioninae) in the New and Old Worlds. Molecular Phylogenetics and Evolution. 2018;125 :163-176. DOI (full text)Abstract
The longhorn beetle genus Callipogon Audinet-Serville represents a small group of large wood-boring beetles whose distribution pattern exhibits a unique trans-Pacific disjunction between the East Asian temperate rainforest and the tropical rainforest of the Neotropics. To understand the biogeographic history underlying this circum-Pacific disjunct distribution, we reconstructed a molecular phylogeny of the subfamily Prioninae with extensive sampling of Callipogon using multilocus sequence data of 99 prionine and four parandrine samples (ingroups), together with two distant outgroup species. Our sampling of Callipogon includes 18 of the 24 currently accepted species, with complete representation of all species in our focal subgenera. Our phylogenetic analyses confirmed the purported affinity between the Palearctic Callipogon relictus and its Neotropical congeners. Furthermore, based on molecular dating under the fossilized birth-death (FBD) model with comprehensive fossil records and probabilistic ancestral range reconstructions, we estimated the crown group Callipogon to have originated in the Paleocene circa 60 million years ago (Ma) across the Neotropics and Eastern Palearctics. The divergence between the Palearctic C. relictus and its Neotropical congeners is explained as the result of a vicariance event following the demise of boreotropical forest across Beringia at the Eocene-Oligocene boundary. As C. relictus represents the unique relictual species that evidentiates the lineage's expansive ancient distribution, we evaluated its conservation importance through species distribution modelling. Though we estimated a range expansion for C. relictus by 2050, we emphasize a careful implementation of conservation programs towards the protection of primary forest across its current habitats, as the species remains highly vulnerable to habitat disturbance.
De-la-Mora M, Piñero D, Oyama K, Farrell BD, Magallón S, Núñez-Farfán J. Evolution of Trichobaris (Curculionidae) in relation to host plants: Geometric morphometrics, phylogeny and phylogeography. Molecular Phylogenetics and Evolution. 2018;124 (July 2018) :37-49. DOI (full text)Abstract
The family Curculionidae (Coleoptera), the “true” weevils, have diversified tightly linked to the evolution of flowering plants. Here, we aim to assess diversification at a lower taxonomic level. We analyze the evolution of the genus Trichobaris in association with their host plants. Trichobaris comprises eight to thirteen species; their larvae feed inside the fruits of Datura spp. or inside the stem of wild and cultivated species of Solanaceae, such as potato, tobacco and tomato. We ask the following questions: (1) does the rostrum of Trichobaris species evolve according to the plant tissue used to oviposit, i.e., shorter rostrum to dig in stems and longer to dig in fruits? and (2) does Trichobaris diversify mainly in relation to the use of Datura species? For the first question, we estimated the phylogeny of Trichobaris based on four gene sequences (nuclear 18S and 28S rRNA genes and mitochondrial 16S rRNA and COI genes). Then, we carried out morphogeometric analyses of the Trichobaris species using 75 landmarks. For the second question, we calibrated a COI haplotype phylogeny using a constant rate of divergence to infer the diversification time of Trichobaris species, and we traced the host plant species on the haplotype network. We performed an ancestral state reconstruction analysis to infer recent colonization events and conserved associations with host plant species. We found that ancestral species in the Trichobaris phylogeny use the stem of Solanum plants for oviposition and display weak sexual dimorphism of rostrum size, whereas other, more recent species of Trichobaris display sexual dimorphism in rostrum size and use the fruits of Datura species, and a possible reversion to use the stem of Solanaceae was detected in one Trichobaris species. The use of Datura species by Trichobaris species is widely distributed on haplotype networks and restricted to Trichobaris species that originated ca. 5 ± 1.5 Ma. Given that the origin of Trichobaris is estimated to be ca. 6 ± 1.5 Ma, it is likely that Datura has played a role in its diversification.
Shin S, Clarke D, Lemmon AR, Lemmon EM, Aitken AL, Haddad S, Farrell BD, Marvaldi AE, Oberprieler RG, McKenna DD. Phylogenomic Data Yield New and Robust Insights into the Phylogeny and Evolution of Weevils. Molecular Biology and Evolution. 2018;35 (4) :823-836. DOI (full text)Abstract
The phylogeny and evolution of weevils (the beetle superfamily Curculionoidea) has been extensively studied, but many relationships, especially in the large family Curculionidae (true weevils; > 50,000 species), remain uncertain. We used phylogenomic methods to obtain DNA sequences from 522 protein-coding genes for representatives of all families of weevils and all subfamilies of Curculionidae. Most of our phylogenomic results had strong statistical support, and the inferred relationships were generally congruent with those reported in previous studies, but with some interesting exceptions. Notably, the backbone relationships of the weevil phylogeny were consistently strongly supported, and the former Nemonychidae (pine flower snout beetles) were polyphyletic, with the subfamily Cimberidinae (here elevated to Cimberididae) placed as sister group of all other weevils. The clade comprising the sister families Brentidae (straight-snouted weevils) and Curculionidae was maximally supported and the composition of both families was firmly established. The contributions of substitution modeling, codon usage and/or mutational bias to differences between trees reconstructed from amino acid and nucleotide sequences were explored. A reconstructed timetree for weevils is consistent with a Mesozoic radiation of gymnosperm-associated taxa to form most extant families and diversification of Curculionidae alongside flowering plants—first monocots, then other groups—beginning in the Cretaceous.