Publications by Year: 2017

2017
Laurindo da Silva F, Farrell BD. Non-biting midges (Diptera: Chironomidae) research in South America: subsidizing biogeographic hypotheses. Annales de Limnologie - International Journal of Limnology. 2017;53 :111-128. DOI (full text)Abstract
We present data on Chironomidae (Insecta: Diptera) collected in South America together with results on the mitochondrial DNA diversity within selected megadiverse genera. This work is part of an on-going project on the ancient origin of South American biodiversity using non-biting midges. Collections were made at 42 localities, in March 2014 and February 2015, in a diverse array of habitats, including small streams, rivers, ponds, lakes and bays. In total, 3196 representatives of six subfamilies were collected. Sixty-one genera were identified, containing at least 211 species. The subfamilies Chironominae and Orthocladiinae predominated in all samples. Tanypodinae were often present, but rarely in large numbers. Except for Podonomus pepinellii, reported from Brazil, Podonominae were collected in a few localities in Argentina (Arroyo Lopez, and Arroyo Gutierrez and Gutierrez Lake) and Chile (Llanquihue Lake). Prodiamesinae were only recorded in Chile. Analysis of DNA barcode sequences using neighbor-joining estimation supported 66 species within the selected genera. The chironomid fauna of South America includes multiple genera with worldwide distributions, with Australian, Nearctic and Neotropical components.
de Medeiros BAS, Barghini A, Vanin SA. Streetlights attract a broad array of beetle species. Revista Brasileira de Entomologia. 2017;61 (1) :74 - 79. DOI (full text)Abstract
Light pollution on ecosystems is a growing concern, and knowledge about the effects of outdoor lighting on organisms is crucial to understand and mitigate impacts. Here we build up on a previous study to characterize the diversity of all beetles attracted to different commonly used streetlight set ups. We find that lights attract beetles from a broad taxonomic and ecological spectrum. Lights that attract a large number of insect individuals draw an equally high number of insect species. While there is some evidence for heterogeneity in the preference of beetle species to different kinds of light, all species are more attracted to some light radiating ultraviolet. The functional basis of this heterogeneity, however, is not clear. Our results highlight that control of ultraviolet radiation in public lighting is important to reduce the number and diversity of insects attracted to lights.
deMedieros_streetlights_beetles.pdf
Haddad S, Shin S, Lemmon AR, Lemmon EM, Svacha P, Farrell BD, Ślipinski A, Windsor D, McKenna DD. Anchored hybrid enrichment provides new insights into the phylogeny and evolution of longhorned beetles (Cerambycidae). Systematic Entomology. 2017. DOI (full text)Abstract
Cerambycidae is a species-rich family of mostly wood-feeding (xylophagous) beetles containing nearly 35,000 known species. The higher-level phylogeny of Cerambycidae has never been robustly reconstructed using molecular phylogenetic data or a comprehensive sample of higher taxa, and its internal relationships and evolutionary history remain the subjects of ongoing debate. We reconstructed the higher-level phylogeny of Cerambycidae using phylogenomic data from 522 single copy nuclear genes, generated via anchored hybrid enrichment. Our taxon sample included exemplars of all families and 23/30 subfamilies of Chrysomeloidea, with a focus on the large family Cerambycidae. Our results reveal a monophyletic Cerambycidae sensu stricto in all but one analysis, and a polyphyletic Cerambycidae sensu lato. When monophyletic, Cerambycidae sensu stricto was sister to the family Disteniidae. Relationships among the subfamilies of Cerambycidae sensu stricto were also recovered with strong statistical support except for Cerambycinae being made paraphyletic by Dorcasomus (Dorcasominae) in the nucleotide (but not amino acid) trees. Most other chrysomeloid families represented by more than one terminal taxon – Chrysomelidae, Disteniidae, Vesperidae, and Orsodacnidae – were monophyletic, but Megalopodidae was rendered paraphyletic by Cheloderus (Oxypeltidae). Our study corroborates some relationships within Chrysomeloidea that were previously inferred from morphological data, while also reporting several novel relationships. The present work thus provides a robust framework for future, more deeply taxon-sampled, phylogenetic and evolutionary studies of the families and subfamilies of Cerambycidae sensu lato and other Chrysomeloidea.
Peris D, Pérez-de la Fuente R, Peñalver E, Delclòs X, Barrón E, Labandeira CC. False Blister Beetles and the Expansion of Gymnosperm-Insect Pollination Modes before Angiosperm Dominance. Current Biology. 2017;27 :897–904. DOI (full text)