Publications by Author: Caterino, Michael S.

2015
McKenna DD, Wild AL, Kanda K, Bellamy CL, Beutel RG, Caterino MS, Farnum CW, Hawks DC, Ivie MA, Jameson ML, et al. The beetle tree of life reveals that Coleoptera survived end-Permian mass extinction to diversify during the Cretaceous terrestrial revolution. Systematic Entomology. 2015;40 (4) :835-880. DOI (full text)Abstract

Here we present a phylogeny of beetles (Insecta: Coleoptera) based on DNA sequence data from eight nuclear genes, including six single-copy nuclear protein-coding genes, for 367 species representing 172 of 183 extant families. Our results refine existing knowledge of relationships among major groups of bee- tles. Strepsiptera was confirmed as sister to Coleoptera and each of the suborders of Coleoptera was recovered as monophyletic. Interrelationships among the subor- ders, namely Polyphaga (Adephaga (Archostemata, Myxophaga)), in our study differ from previous studies. Adephaga comprised two clades corresponding to Hydrade- phaga and Geadephaga. The series and superfamilies of Polyphaga were mostly monophyletic. The traditional Cucujoidea were recovered in three distantly related clades. Lymexyloidea was recovered within Tenebrionoidea. Several of the series and superfamilies of Polyphaga received moderate to maximal clade support in most analyses, for example Buprestoidea, Chrysomeloidea, Coccinelloidea, Cucujiformia, Curculionoidea, Dascilloidea, Elateroidea, Histeroidea and Hydrophiloidea. However, 836 D. D. McKenna et al.
many of the relationships within Polyphaga lacked compatible resolution under maximum-likelihood and Bayesian inference, and/or lacked consistently strong nodal support. Overall, we recovered slightly younger estimated divergence times than pre- vious studies for most groups of beetles. The ordinal split between Coleoptera and Strepsiptera was estimated to have occurred in the Early Permian. Crown Coleoptera appeared in the Late Permian, and only one or two lineages survived the end-Permian mass extinction, with stem group representatives of all four suborders appearing by the end of the Triassic. The basal split in Polyphaga was estimated to have occurred in the Triassic, with the stem groups of most series and superfamilies originating during the Triassic or Jurassic. Most extant families of beetles were estimated to have Creta- ceous origins. Overall, Coleoptera experienced an increase in diversification rate com- pared to the rest of Neuropteroidea. Furthermore, 10 family-level clades, all in suborder Polyphaga, were identified as having experienced significant increases in diversification rate.These include most beetle species with phytophagous habits, but also several groups not typically or primarily associated with plants. Most of these groups originated in the Cretaceous, which is also when a majority of the most species-rich beetle families first appeared. An additional 12 clades showed evidence for significant decreases in diversi- fication rate. These clades are species-poor in theModern fauna, but collectively exhibit diverse trophic habits. The apparent success of beetles, as measured by species numbers, may result from their associations with widespread and diverse substrates – especially plants, but also including fungi, wood and leaf litter – but what facilitated these associ- ations in the first place or has allowed these associations to flourish likely varies within and between lineages.Our results provide a uniquelywell-resolved temporal and phylo- genetic framework for studying patterns of innovation and diversification in Coleoptera, and a foundation for further sampling and resolution of the beetle tree of life.

McKenna DD, Farrell BD, Caterino MS, Farnum CW, Hawks DC, Maddison DR, Seago AE, Short AEZ, Newton AF, Thayer MK. Phylogeny and evolution of Staphyliniformia and Scarabaeiformia: forest litter as a stepping stone for diversification of nonphytophagous beetles. Systematic Entomology. 2015;40 (1) :35-60. DOI (full text)Abstract

The beetle series Staphyliniformia exhibits extraordinary taxonomic, ecological and morphological diversity. To gain further insight into staphyliniform relationships and evolution, we reconstructed the phylogeny of Staphyliniformia using DNA sequences from nuclear 28S rDNA and the nuclear protein-coding gene CAD for 282 species representing all living families and most subfamilies, a representative sample of Scarabaeiformia serving as a near outgroup, and three additional beetles as more distant outgroups. Under both Bayesian inference (BI) and maximum likelihood inference (MLI), the major taxa within Staphyliniformia are each monophyletic: (i) Staphylinoidea, (ii) Hydrophiloidea s.l., and the contained superfamilies (iii) Hydrophiloidea s.s. and (iv) Histeroidea, although Staphylinoidea and Hydrophiloidea s.l. are not strongly supported by MLI bootstrap. Scarabaeiformia is monophyletic under both methods of phylogenetic inference. However, the relative relationships of Staphylinoidea, Hydrophiloidea s.l. and Scarabaeiformia differ between BI and MLI: under BI, Staphyliniformia and Scarabaeiformia were sister groups; under MLI, Hydrophiloidea s.l. and Scarabaeiformia were sister groups and these together were sister to Staphylinoidea. The internal relationships in Scarabaeiformia were similar under both methods of phylogenetic inference, with Cetoniinae, Dynastinae+Rutelinae, Hybosoridae, Passalidae, Scarabaeidae and Scarabaeinae recovered as monophyla. Histeridae comprised two major clades: (1) Abraeinae, Trypanaeine and Trypeticinae; and (2) Chlamydopsinae, Dendrophilinae, Haeteriinae, Histerinae, Onthophilinae, Saprininae and Tribalinae. The relationships among early-divergent Hydrophiloidea differed between BI and MLI, and overall were unresolved or received only moderate to low nodal support. The staphylinoid families Agyrtidae, Hydraenidae and Ptiliidae were recovered as monophyletic; the latter two were sister taxa, and Staphylinidae+Silphidae was also monophyletic. Silphidae was placed within Staphylinidae in close relation to a subset of Tachyporinae. Pselaphinae and Scydmaeninae were both recovered within Staphylinidae, in accordance with recent analyses of morphological characters, although not always with recently proposed sister taxa. None of the four major groups of Staphylinidae proposed by Lawrence and Newton (1982) was recovered as monophyletic. Certain highly specialized staphyliniform habits and morphologies, such as abdominal defensive glands and reduced elytra, have arisen in parallel in separate lineages. Further, our analyses support two major transitions to an aquatic lifestyle within Staphyliniformia: once within Staphylinoidea (Hydraenidae), and once within Hydrophiloidea s.l. (Hydrophiloidea s.s.). On a smaller scale, the most common transition is from litter to subcortical or to periaquatic microhabitats and the next most common is from litter to carrion and to fungi. Overall, transitions to periaquatic microhabitats were the most numerous. The broad picture in Staphyliniformia seems to be a high level of evolutionary plasticity, with multiple possible pathways to and from many microhabitat associations, and litter as a major source microhabitat for diversification. In Scarabaeiformia, the most common transitions were from litter to foliage, with flowers to litter, litter to flowers, and litter to dung being next, and then litter to roots, logs or carrion. Litter is again the largest overall source microhabitat. The most common transitions were to foliage and flowers.It thus seems that the litter environment presents ecological and evolutionary opportunities/challenges that facilitate entry of Staphyliniformia and Scarabaeiformia into new' and different ecological adaptive zones.